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ABSTRACT

Developers report testing their regular expressions less than the

rest of their code. In this work, we explore how thoroughly tested

regular expressions are by examining open source projects.

Using standard metrics of coverage, such as line and branch cov-

erage, gives an incomplete picture of the test coverage of regular

expressions. We adopt graph-based coverage metrics for the DFA

representation of regular expressions, providing fine-grained test

coverage metrics. Using over 15,000 tested regular expressions in

1,225 Java projects onGitHub, wemeasure node, edge, and edge-pair

coverage. Our results show that only 17% of the regular expressions

in the repositories are tested at all. For those that are tested, the

median number of test inputs is two. For nearly 42% of the tested

regular expressions, only one test input is used. Average node and

edge coverage levels on the DFAs for tested regular expressions

are 59% and 29%, respectively. Due to the lack of testing of regular

expressions, we explore whether a string generation tool for reg-

ular expressions, Rex, achieves high coverage levels. With some

exceptions, we found that tools such as Rex can be used to write

test inputs with similar coverage to the developer tests.
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1 INTRODUCTION

A survey of professional developers reveals that they test their

regular expressions less than the rest of their code [9]. In this work,
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we explore how thoroughly tested regular expressions are by ex-

amining open source projects.

Traditional code coverage criteria, are rather coarse-grained

when it comes to regular expressions. Statement coverage requires

the regular expression to be invoked at least once. If the regular

expression call site appears in a predicate, branch coverage requires

that the regular expression is tested with at minimum two strings,

one in the language of the regular expression and one not. How-

ever, these metrics ignore the complex structure represented by a

regular expression. We propose to use test metrics for graph-based

coverage [2] over the DFA representation of regular expressions.

Regular expression tools can help support developers in their

creation and testing of regular expressions. These tools either auto-

matically generate strings according to the given regular expres-

sions [20, 21, 28, 33] or automatically generate regular expressions

according to the given list of strings [5, 26]. Rex [33] is a tool for

analyzing regular expressions through symbolic analysis. Given a

regular expression R, Rex uses the Z3 [15] SMT solver to generate

members of the language by treating it as a satisfiability problem.

Like automatic test case generation tools, integrating these gener-

ated results into software testing can help automate the process,

but it is not clear how well covered the regular expressions would

be compared to developer-written tests.

In this work, we focus on empirically measuring how well tested

regular expressions are and further explore the potential for using

existing tools, specifically Rex, to improve the test coverage. First,

we measure the test coverage of regular expressions in the wild

based on a set of 1,225 Java projects on GitHub containing 15,096

tested regular expressions. Second, we measure the test coverage

of strings generated by Rex and compare the coverage achieved

against the strings generated by developers in the GitHub projects.

Our contributions are:

• Application of graph-based metrics for test coverage of regu-

lar expressions: node coverage, edge coverage, and edge-pair

coverage (Section 3).

• Test coverage evaluation of 15,096 regular expressions based

on nearly 900,000 input strings from 1,225 Java projects from

GitHub (RQ1).

• Evaluation of test coverage achieved by the Rex symbolic

analysis tool for regular expressions (RQ2).

Our main findings are:

• Of 18,426 call sites for three pattern matching API meth-

ods identified statically in 1,225 GitHub projects, only 3,093

(16.8%) are ever executed by test suites (RQ1).

• Of 15,096 regular expressions captured during test suite ex-

ecution of 1,225 GitHub projects, 10,970 (72.7%) use only

failing inputs (4,941) or only matching inputs (6,029) (RQ1).
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• The Rex-generated test inputs achieve similar coverage levels

to the developer-written tests (RQ2).

2 BACKGROUND AND MOTIVATION

A regular expression is a sequence of characters that defines a search

pattern. The set of strings matched by the regular expression is

a language. That is, a regular expression R represents a language

L(R) over an alphabet Σ, where L(R) is a (possibly infinite) set of

strings. For a given language, there are many regular expressions

that can describe it. A regular expression can be represented as a

string of tokens, a finite state automaton in deterministic (DFA)

form, or in non-deterministic (NFA) form.

In this work, we explore test coverage metrics over the DFA

representing a regular expression. This requires three informal ex-

plorations to ensure feasibility and assess the potential impact. First,

we explore the potential of building DFAs from regular expressions

by analyzing regular expressions collected from an existing Python

dataset [9] and testing them for regularity [32]. Second, we show

intuitively how existing coverage metrics are insufficient. Third,

to motivate the structural coverage metrics, we explore whether

faults can lie along untested paths in a DFA.

2.1 How Regular Are Regular Expressions?

Regular expressions in source code can contain non-regular fea-

tures, such as backreferences. An example is the regular expression

([a-z]+\1), which matches a repeated word in a string, such as

łappleapple". Building a DFA is not possible for this since this regu-

lar expression is non-regular. For regular expressions in source code

that are indeed regular, we can build DFAs and measure coverage

based on a test suite. Here, we are testing how many of the regular

expressions in the wild are truly regular.

We explore an existing and publicly available dataset of 13,597

regular expressions scraped from Python projects on GitHub. To

test for regularity, we use an empirical approach since the ability to

build a DFA from a regular expression implies that it is regular [32].

Of the 13,597 Python regular expressions, 13,029 (95.9%) are regular

in that we were successful in building DFAs for each using the

RE2 [14] regular expression processing engine. For the remaining

568, we investigated each by hand. One regular expression was

removed because its repetition exceeds the RE2 limits. While it may

indeed be regular, to be conservative, we mark it as non-regular. An

additional 81 contained comments within the regular expressions,

which are unsupported in RE2, so these were also assumed to be

non-regular; 128 contained unsupported characters. The remaining

368 were non-regular as they contained backreferences.

In the end, with nearly 96% of the regular expressions being reg-

ular (as a low estimate), we conclude that most regular expressions

found in the wild are regular and thus can be modeled with DFAs.

2.2 Limitations of Code Coverage

In this work, we posit that code coverage metrics [2, Chapter 2] [24,

31, 37] such as statement, branch, and path, are too coarse-grained

for regular expressions. Statement coverage requires that the code

containing the regular expression is reached, leading to a minimum

of one test input for the regular expression. If the regular expression

is in a statement where the control flow is dependent on the match-

ing outcome, branch coverage requires that the regular expression

have at least two inputs, one that evaluates to true and another that

evaluates to false.

Consider the following Java code snippet. The call site for method

Pattern.matches is on line 1. The regular expression is -d|--data.
1 if(Pattern.matches("-d|--data",strInput )){

2 System.out.println("YES");

3 ...

4 }else{

5 System.out.println("NO");

6 ...

7 }

Statement coverage of the regular expression requires that line 1

is executed and branch coverage requires two test inputs, one to

cover the true branch and one to cover the false branch. Using

coverage metrics based on the DFA representation of the regular

expression, on the other hand, would require 1) each branch to be

covered, and 2) each case in the regular expression, ł-d" and ł--data",

to be covered. Such metrics measure test coverage of the regular

expression’s control flow (i.e., the DFA) just like branch coverage

measures test coverage of source code’s control flow graph.

Existing tools and techniques can direct test input generation

toward areas of untested paths. One technique among these is sym-

bolic execution [3, 8, 18, 22, 25], and Rex [33] has been developed

for symbolic analysis of regular expressions. However, Rex focuses

solely on the matching behavior [33], which limits its ability to

cover the false branch in the Java example above. Hampi [20, 21]

and brics [28] similarly only generates passing strings. While useful,

there are no guarantees of structural coverage.

2.3 DFA Coverage Example

Bug reports related to regular expressions abound. A search for

łregex OR regular expressionž in GitHub yields over 555,000 issues,

with 22% of those still being open. One in particular illustrates how

coverage metrics on the DFA could have brought a particular bug

to the developer’s attention sooner. This bug report1 describes an

issue with the regular expression \d+\.d+ in the NAR plugin for

Maven. Figure 1 shows the DFA of this regular expression built

using RE2 [14], and we take this opportunity to describe the DFA

notation used throughout this paper2.

Node 0 is the start-state, indicated by the incoming arrow. Nodes

with double-circles are accept states, such as Node 4. Node e is

the error state, denoting a mismatch. The edges are labeled with

transitions, often using syntactic sugar for ease of interpretation.

The edge
−→
01 is traversed when a digit from 0-9 is read. If any other

character is read at Node 0, (i.e., not 0-9), edge
−→
0e is traversed.

There is a self-loop on Node 1 for digits 0-9. If the period character

is read from Node 1, then edge
−→
12 is traversed.

In RE2, when reading an input string, byte [256], is added as a

text-end marker. For example, the input string ł0.0ž is transformed

to the byte stream [48 46 48 256], as [48] is the byte for ‘0’, [46]

is for ‘.’, and [256]marks the end of the string. Byte [256] is matched

on edges ‘[0-256]’, ‘not 0-9’, ‘not d’, or ‘any except 0-9 and .’.

1https://github.com/maven-nar/nar-maven-plugin/issues/228
2The regular expression in the bug is triggered by Matcher.find()with a ManyMatch
DFA. For simplicity, we show the FullMatch DFA, a subgraph of the ManyMatch.
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Table 1: Coverage of \d+: S = {“2”, “1001”, “u”, “100u”},

Ssucc = {“2”, “1001”}, and Sf ail = {“u”, “100u”}.

S Ssucc Sf ail
NC 100.0% 80.0% 100.0%

EC 100.0% 71.4% 85.7%

EPC 75.0% 62.5% 50.0%

S = {s0}. Traversing G visits 0 → 1 → 3 (recall that ł2ž is

interpreted as the byte stream [50 256]). Node 3 is the accept node,

which denotes that the regular expression matches the input string

(i.e., s ∈ L(R)). During the traversal of G, nodes {0, 1, 3} are visited,

meaning that Ncov = {0, 1, 3}, Ecov = {
−→
01,
−→
13}, and EPcov = {

−−→
013}.

The coverage levels for \d+ by input strings S = {s0} are: NC =

60% (3/5), EC = 28.6% (2/7), and EPC = 12.5% (1/8).

Next, consider adding the string s1 =ł1001ž, which is interpreted

as the byte stream [49 48 48 49 256]. Now, S = {s0, s1}. Travers-

ingG on s1 traverses the following path: 0→ 1→ 2→ 2→ 2→ 3,

adding node 2 to Ncov , edges
−→
12,
−→
22, and

−→
23 to Ecov , and edge-pairs

−−→
012,
−−→
122,
−−→
222, and

−−→
223 to EPcov . As a result, the coverage levels for

the regular expression \d+ by input strings S = {s0, s1} are: NC =

80% (4/5), EC = 71.4% (5/7), and EP = 62.5% (5/8).

As an example of a non-matching string, let s2 = łuž, which is

interpreted as the byte stream [117 256]. The path traversed in

G is 0→ e; after reaching e , the processing stops. Node e is added

to Ncov , edge
−→
0e is added to Ecov , and there is no change to EPcov .

Considering S = {s0, s1, s2}, the combined coverage levels are: NC =

100% (5/5), EC = 85.7% (6/7), and EPC = 62.5% (5/8).

For another example of a non-matching string, let s3 = ł100už,

which is interpreted as the byte stream [49 48 48 117 256]. The

path traversed inG is 0→ 1→ 2→ 2→ 3→ e . While this input

visits all nodes in G, NC = 100% already, so no nodes are added to

Ncov . Edge
−→
3e is added to Ecov , edge-pair

−−→
23e is added to EPcov .

Considering S = {s0, s1, s2, s3}, the combined coverage levels are:

NC = 100% (5/5), EC = 100% (7/7), and EPC = 75% (6/8).

For each coverage metric, we compute coverage over the entire

set of input strings, total, and two subsets: success, and failure. The

numbers reported in this section are for the total set of input strings,

that is, S = {s0, s1, s2, s3}. After, we split the input strings into those

that terminate in an accept state in Nm , which we call Ssucc , and

those that terminate in the error state Ne , which we call Sf ail . With

this example, Ssucc = {s0, s1} and Sf ail = {s2, s3}.

Table 1 presents a summary of the coverage levels for each set

of input strings. Achieving 100% for any of the coverage metrics

is infeasible for Ssucc alone because the error state e will never

be reached, missing that node and the edges leading to it. In this

example, EC for Ssucc is 71.4% while EC for S is 100%.

Achieving 100% coverage for EPC is the most difficult, but it

is possible in this example. The missing edge-pairs are computed

by EP \ EPcov = {
−−→
123,
−−→
13e}. Two additional input strings can lead

to 100% EPC. Input ł1už would be interpreted as the byte stream

[49 117 256] and traverses the path 0 → 1 → 3 → e , hence

covering
−−→
13e . Input ł11už would lead to byte stream [49 49 117

256], traverse the path 0→ 1→ 2→ 3→ e and cover
−−→
123.

Note that it is possible to have a DFA which is simply two nodes

connected by a single edge. Thus, edge pairs may not exist. For

this case, we treat edge-pair coverage as identical to edge coverage.

Among the 15,096 regular expressions studied in this work, only

two regular expressions have this structure.

4 RESEARCH QUESTIONS

To explore the potential of using graph coverage metrics for regular

expressions, we evaluate the following research questions:

RQ1: How well are regular expressions tested in GitHub?

To answer RQ1, we identify 1,225 Java projects that have existing

test suites covering the regular expressions. From these, we ex-

tract 15,096 regular expressions and 899,804 total test input strings,

measuring NC, EC, and EPC for each regular expression. To ob-

tain the regular expressions and their corresponding strings which

are covered by test cases, we use the Java bytecode manipulation

framework Javassist [11] to record the regular expressions when

pattern matching methods are triggered by test cases.

RQ2: How well can the regular expression string generation tool Rex

improve the test coverage of regular expressions?

Using the regular expressions from RQ1, we generate test strings

using Rex [33] and calculate the regular expression coverage, com-

paring it to the coverage of the user-defined test suites from RQ1.

Using Rex, we generate test suites of three sizes, one to match the

size of the user-defined test suites from the GitHub projects, one 5x

that size, and one 10x that size. By comparing the coverage statis-

tics we got in RQ2 to those in RQ1, we evaluate the test coverage

possibilities through using an automated tool.

5 STUDY

Applying the coverage metrics defined in Section 3.2 to regular ex-

pressions from the wild requires (1) instrumentation to capture the

regular expressions and strings matched against them (Section 5.1),

(2) a tool to measure coverage given a regular expression and a set

of strings (Section 5.2), and (3) a large corpus of projects with regu-

lar expressions and test suites that execute the regular expressions

(Section 5.3). To address RQ2, we use the Rex [33] tool to generate

input strings for the regular expressions in our study (Section 5.4).

5.1 Instrumentation

This section describes our approach to collecting regular expres-

sions from GitHub projects and the strings evaluated against the

regular expressions during testing.

5.1.1 Instrumented Functions. There are different types of match-

ing between a regular expression and a string. The Java function

Pattern.matches requires the regular expression to match a string

from its beginning to its end; Python’s re.match requires the regular

expression to match a string only from its beginning, not necessar-

ily match to the end of the string; and the C# function Regex.Match

requires the regular expression to match only a substring of the in-

put string. These are called FullMatch, FirstMatch, and ManyMatch,

respectively. In this work, we consider only FullMatch matches

and related functions in Java projects. The related functions for

FullMatch in Java are:

• java.lang.String.matches(String regex)

• java.util.regex.Matcher.matches()
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• java.util.regex.Pattern.matches(String regex,

CharSequence input)

In these functions the entire string is required to match the regular

expression [17]. Thus, a regular expression with end-point anchors

(i.e., ^ and $) and without are no different.

5.1.2 Bytecode Manipulation. Our instrumentation is built on top

of the Java bytecode manipulation framework Javassist [11], which

can dynamically change the class bytecode in the JVM. All the

projects are run in jdk1.7. We intercepted FullMatch function in-

vocations in Java. For each invocation, we collect information

about the regular expression itself, its location in the code, and

any strings matched against it during test suite execution. These

strings matched against the regular expression are referred to as

the input strings or test inputs (i.e., S from Section 3.2).

Since a regular expression may also appear in third-party li-

braries, we use the Java Reflection API to additionally record the

caller function stack of the instrumented methods and extract the

file name, class name, andmethod name of their callermethods. This

allows us to identify when the regular expression being executed is

from the system under test and when it is from a third-party library.

We are dependent on two libraries during the experimentation,

org.junit and org.apache.maven. Because Maven uses regular

expressions to automate unit tests, all recorded regular expressions

whose test classes are from package org.junit.runner.* or from

package org.apache.maven.plugins.* are treated as regular ex-

pressions from third-party libraries and dropped.

5.1.3 Recorded Information. We illustrate the recorded informa-

tion for the regular expression ((:\w+)|\*) and a string łone-

namež from a project used in our study1:

• system under test: mikko-apo/KiRouter.java

• test file: SinatraRouteParser.java

• test class: kirouter.SinatraRouteParser

• test method: compileRoutePattern

• call site: line 38

• regular expression: ((:\w+)|\*)

• input string:łone-name"

In Section 2.2, the regular expression in the call site on line 1 is

hard-coded. However, often the regular expression is passed as

a variable, allowing multiple regular expressions to be observed

during testing at the same call site (i.e., there is a many-to-one

relationship between regular expressions and call sites). When

this occurs, the recorded information is the same as above, except

regular expression and input string would be different.

5.2 Coverage Analysis

This section details the construction of DFAs for computing cov-

erage. Given a regular expression R and a set of input strings S ,

we first build a DFA for L(R) and then track the nodes and edges

visited in the DFA during pattern matching with each string s ∈ S .

We built our infrastructure on top of RE2 [14], a regular expression

engine similar to those used in PCRE, Perl, and other languages.2

1https://github.com/mikko-apo/KiRouter.java
2Original RE2 at https://github.com/google/re2 and modified code at https://
github.com/wangpeipei90/re2

5.2.1 DFA Types. Given a regular expression and an input string to

match, we could build multiple DFAs with different considerations.

We could build a static DFA with a regular expression alone or build

a DFA on-the-fly (dynamic DFA) considering both a regular expres-

sion and an input string. For the same regular expression, different

input strings will yield different dynamic DFAs. We can also build

a Forward DFA and Backward DFA depending on the direction of

scanning the regular expression. These decisions come with var-

ious performance tradeoffs during the matching process. For the

purpose of our work, we need each DFA to be built consistently

regardless of the input string, so we use a static DFA. We chose the

forward direction as it seems the most natural for interpretation.

5.2.2 DFA Mapping. When matching an input string to a regular

expression, RE2 builds a dynamic DFA. However, our coverage is

computed over a static DFA. This requires mapping to aggregate

coverage of a regular expression given multiple input strings.

For a single regular expression, different input strings often re-

sult in different dynamic DFAs. To make matters worse, these DFAs

have inconsistent naming of their states. Therefore, to calculate the

coverage of a certain regular expression based on the same DFA,

these dynamic DFAs have to be mapped to the same static DFA,

and then coverage is computed on the static DFA. This is usually

straightforward as the dynamic DFA is always an isomorphic sub-

graph of the static DFA and N0, Ne and Nm are consistently labeled

in the static and dynamic DFAs.

Consider the regular expression \d+ and S = {s0, s1, s2, s3} from

Section 3.2 where s0 = ł2ž, s1 = ł1001ž, s2 = łuž, and s3 = ł100už.

Figure 3a shows the static forward DFA. The dynamic DFAs cor-

responding to these four inputs are shown in Figure 3b, Figure 3c,

Figure 3d, and Figure 3e, respectively. Blue arrows are used to iden-

tify the visited edges in the dynamic DFAs when the input string is

a match. Red edges are used to identify the visited edges when the

input string is not a match. Note that in Figure 3, for simplicity, we

have already mapped and renamed the nodes in the dynamic DFAs

according to the static DFA.

5.2.3 RE2 Limitations and Modifications. We enlarged the default

memory size of a cached DFA so that it could accommodate large

DFA graphs. Due to Linux environment limitations, string length

is limited to 131,072 and null type is not allowed. These situations

are rare, impacting < 1% of the collected regular expressions (see

Section 5.3).

5.2.4 Coverage Calculation. With the consistent naming between

a static DFA and a dynamic DFA, all nodes, edges, and edge pairs

in the latter are regarded as visited nodes, edges, and edge pairs of

the former. That is, a node only appears in a dynamic DFA when

it is visited during matching; these can be thought of as just-in-

time DFA constructions in the context of a string to match. The

coverage metrics from Section 3.2 are computed over the static

DFAs, aggregating over all input strings observed during testing.

5.3 Artifacts for RQ1

RepoReaper [29] provides a curated list of GitHub projects with the

ability to sort based on project properties, such as the availability

of test suites, which is a pre-requisite for our study. We focused on
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Table 3: Description of 15,096 regular expressions analyzed

for RQ1. All numbers are rounded to nearest integer.

Attributes mean 25% 50% 75% 90% 99%

Nodes ( |N |) 144 12 28 70 324 939

Edges ( |E |) 565 24 75 212 938 2,813

Edge pairs ( |EP |) 2,115 25 99 414 1,647 16,850

Regular exp. len. 31 13 18 39 67 161

# Input strings ( |S |) 60 1 2 7 27 662

Input string len. 125 9 17 63 318 948

5.3.5 Project Characteristics. Table 2 describes the 1,225 projects in

terms of Tested regular exp. (numbers of tested regular expressions

per project), Stars (a measure of popularity), KLOC (lines of code in

thousands), Size (size of the repository in KB), Test ratio (the ratio

of number of lines of code in test files to the total lines of code in

repository, as reported by RepoReaper), Call sites (the number of

FullMatch methods in the source code), Tested call sites (the number

of FullMatch call sites executed by the tests), and Reg. exp. / tested site

(the number of regular expressions passed to each tested call site).

The mean column describes the average value for each attribute.

Columns 25%, 50%, 75%, 90%, and 99% show the distribution of each

attribute at 25 percentile, median, 75 percentile, 90 percentile, and

99 percentile, respectively. The average number of tested regular

expressions collected per project was 12 with a range of 1 to 2,004.

5.3.6 Regular Expression Characteristics. Table 3 shows the DFA

information for regular expressions. Nodes, edges, and edge pairs are

the total number of nodes, edges, edge pairs in the DFA graph of a

regular expression. The average regular expression is quite large

with 144 nodes, though this is skewed as the median is 28 nodes.

Regular exp. len. measures the length of the string representing the

regular expression itself in characters. # Input strings is the number

of syntactically unique input strings executed by a project’s test

suite, per regular expression. The average number of syntactically

unique test inputs per regular expression is 60, but the median is

2. Input string len. shows the lengths of the input strings (i.e., each

s ∈ S) in terms of the number of characters.

5.4 Artifacts for RQ2

To explore the coverage of regular expressions using tools, we

selected Rex [33] due to its high language feature coverage [9].

5.4.1 Artifact Selection. We need a set of regular expressions with

the following characteristics: 1) are covered by tests; 2) can be

analyzed by RE2 for coverage analysis; and 3) can be analyzed

by Rex for test input generation. To satisfy 1) and 2), we begin

with the dataset from RQ1 of 1,225 projects and 15,096 regular

expressions. To satisfy 3), we select all the regular expressions that

Rex supports and for which |Ssucc | > 0, since Rex only generates

matching strings, leaving 10,155 regular expressions of which 9,063

are syntactically unique.

5.4.2 Rex Setup. Rex defaults to ManyMatch as opposed to the

FullMatch behavior of our dataset. To force Rex to treat each regular

expression as a full match, we added endpoint anchors (i.e., ^ and $)

to each regular expression. Because Rex may get stuck in generating

input strings for certain regular expressions, we set a timeout of one

hour for Rex to generate strings; regular expressions that exceed the

Table 4: Description of 7,926 regular expressions analyzed

for RQ2. All numbers are rounded to nearest integer.

Attributes mean 25% 50% 75% 90% 99%

Nodes ( |N |) 220 13 31 162 618 970

Edges ( |E |) 773 30 97 663 1,468 3,694

Edge pairs ( |EP |) 2,422 36 186 1,021 1,999 21,274

Regular exp. len. 29 12 15 31 71 160

# Input strings ( |S |) 70 1 2 8 39 961

|Ssucc | 34 1 1 2 8 208

timeout are discarded. Of the 10,155 regular expressions in GitHub

whose |Ssucc | > 1, Rex encountered the timeout for only two.

Another complication comes at the intersection of the Rex and

RE2 language support; Rex-generated strings must be processed

by RE2 for the coverage analysis. For example, the character class

ł\sž in Rex accepts six whitespace characters and RE2 accepts five.

In another example, some generated Unicode strings in Rex could

not be processed in RE2 because their Unicode encoding in Rex

is UTF-16 while RE2 handles Unicode sequences encoded in UTF-

8 or Latin-1. To simplify the experiment, we configured Rex to

generated strings in ASCII. We also dropped strings which contain

unsupported features or characters in either RE2 or Python 3. We

also dropped strings which lead to failed matchings and reported

the coverage based on successful matchings.

After filtering out all the unsupported regular expressions, our

reported coverages by Rex strings in ASCII encoding are based on

7,926 regular expressions of 985 GitHub projects; 7,007 of them

are syntactically unique. Table 4 shows the attributes of regular

expressions for which Rex could generate strings.

5.4.3 Input String Generation. For each regular expression R, we

use Rex to generate input string sets relative to the size of the

matching strings |Ssucc |. We generate input string sets of three

sizes: equal to |Ssucc |; equal to 5× |Ssucc |; and equal to 10× |Ssucc |.

We refer to these experiments as Rex1M, Rex5M, and Rex10M, re-

spectively. For each experiment, we repeated the string generation

using the system time as the random seed to encourage diversity

among the generated strings. The averages over five runs (Rex5M

and Rex10M) or ten runs (Rex1M) for each metric are reported as

Rex’s coverage of R.

For example, say a regular expression R from GitHub has five

input strings; |S | = 5. Three of the input strings are matching;

|Ssucc | = 3. For this experiment, Rex would generate three strings

ten times, then 15 strings five times, then 30 strings five times,

totaling 30 + 75 + 150 = 255 generated strings. For each set of

{3, 15, 30} strings, NC, EC, and EPC are computed, averaged over

{10, 5, 5} runs.

In the case of finite languages, Rex may fail to generate sufficient

input strings. For example, the total number of matching input

strings in ASCII for a regular expression \d is ten (i.e., 0-9). If in

the repository there are also three matching input strings, Rex

could generate three strings ten times, but would fail to generate

5 × 3 = 15 strings. The calculation of NC, EC, and EPC are based

on the best-effort: for each run of every regular expression, we

calculate coverage with input strings up to |Ssucc | in Rex1M, 5x

of |Ssucc | in Rex5M, and 10x of |Ssucc | in Rex10M; and coverage

of every regular expression is the averages of its coverages over

{10, 5, 5} runs in Rex1M, Rex5M, and Rex10M. In other words, if
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Rex failed to generate the required number of input strings, the

coverage is calculated based on the input strings Rex can generate.

In the ten runs of generating input string sets equal to |Ssucc |

for Rex1M, there are 833 regular expressions that have fewer input

strings than |Ssucc | in at least one run. In the five runs of generating

input string sets 5x of |Ssucc | for Rex5M, there are 2,041 regular

expressions that have fewer input strings than 5x of |Ssucc | in at

least one run. In the five runs of generating input string sets 10x of

|Ssucc | for Rex10M, there are 2,336 regular expressions that have

fewer input strings than 10x of |Ssucc | in at least one run.

6 RESULTS

Here, we present the results of RQ1 and RQ2 in turn.

6.1 RQ1: Test Coverage of Regular Expressions

We address RQ1 is two ways. First, we look at the number of call

sites to FullMatch methods that are actually tested. Next, we look

at the test coverage for each tested regular expression,

6.1.1 Tested Call Sites. In the 1,225 projects, there are 18,426 call

sites of the instrumented functions in Section 5.1.1. However, only

3,093 call sites are executed by the test suites. This means that

15,333 (83.21%) of the call sites are not covered by the test suites.

For those that are, the median of unique regular expressions per

tested call site is one, with an average of five (Table 2).

Summary: Of the 18,426 call sites for FullMatch methods in

1,225 GitHub projects, only 3,093 (16.8%) are executed by the test

suites.

6.1.2 Coverage of Tested Regular Expressions. We successfully gen-

erated static DFAs for 15,096 regular expressions from 1,225 Java

GitHub projects and dynamic DFAs for 899,804 regular expres-

sion/input string pairs.1 Among the regular expressions, 4,941

(32.7%) have only failing inputs (i.e., |Ssucc | = 0) and 6,029 (39.9%)

have only inputs of successful matching (i.e., |Sf ail | = 0). This

means that 10,970 (72.7%) of the regular expressions do not contain

test inputs that exercise both the matching and non-matching sce-

narios. Of these, 6,318 (41.9%) regular expressions contain only one

test string (i.e., |S | = 1). There are 4,126 (27.3%) regular expressions

with both failed and successful matchings. 2

Table 5 describes properties of the test input sets for each regular

expression: |S | is the size of the test suite, computed as the number

of unique input strings for a regular expression; |Ssucc | means the

number of matching inputs; |Sf ail | means the number of failing

inputs; succ_ratio shows the ratio of successful matchings to all

matchings for each regular expression; fail_ratio shows the ratio

of failed matchings to all matchings for each regular expression.

Generally, tested regular expressions use more failing inputs than

successful inputs.

Table 6 describes the distributions of Node Coverage (NC), Edge

Coverage (EC), and Edge-Pair Coverage (EPC) over S , Ssucc , and

Sf ail . Figure 4 displays this information graphically, with coverage

percentage on the y-axis and the input string sets, S , Ssucc , and

Sf ail on the x-axis. Most of the regular expressions are not tested

1We note that 899,804 is less than 60 × 15096 = 905760 because the mean of # Input
strings ( |S |) is 59.60546 and rounded up to 60.
2Data at https://github.com/wangpeipei90/RegexTestingCoverageData.git.

Table 5: Description of 15,096 Regular Expressions’ test

suites. All numbers are rounded to the nearest integer, ex-

cept the ratios which are rounded to two decimal places.

Attributes mean 25% 50% 75% 90% 99%

|S | 60 1 2 7 27 662

|Ssucc | 19 0 1 1 4 79

|Sf ail | 41 0 1 4 19 383

succ_ratio 49.03 0.00 44.70 100.00 100.00 100.00

fail_ratio 50.97 0.00 55.30 100.00 100.00 100.00

Table 6: Coverage values in Figure 4.

Coverage Suite mean 25% 50% 75% 90% 99%

NC (%) S 59.05 24.62 63.64 95.65 100.00 100.00

NC (%) Ssucc 47.84 0.00 46.15 90.00 99.60 99.89

NC (%) Sf ail 18.89 0.00 8.51 25.00 62.26 100.00

EC (%) S 28.74 6.67 23.90 49.97 53.80 80.00

EC (%) Ssucc 23.20 0.00 12.36 49.96 50.00 60.00

EC (%) Sf ail 8.55 0.00 2.20 7.80 32.19 65.08

EPC (%) S 23.77 2.47 12.50 49.96 50.00 66.67

EPC (%) Ssucc 20.48 0.00 5.26 49.94 50.00 55.56

EPC (%) Sf ail 5.50 0.00 0.00 2.74 22.12 57.14
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Figure 4: Coverage for 15,096 regular expressions.

thoroughly since the mean values of coverage are low, especially

for edge and edge-pair coverage. Although the coverages on failed

matchings are relatively small, they contribute to a high overall

test coverage. Failed matching tests are a necessary part of testing

regular expressions, and as shown in Table 5, |Sf ail | > |Ssucc |.

Summary: A majority of regular expressions (10,970, 97.7%) are

tested with exclusively passing (6,029, 39.9%) or exclusively failing

(4,931, 32.7%) test inputs. Edge and edge-pair coverage are both

very low. On average, the set of test inputs contains more failing

inputs than successful inputs.

6.2 RQ2: Coverage with Rex

Figure 5 shows the analysis results given the generated inputs in

ASCII encoding, organized by each of five datasets. RepoBS and

RepoBM show the coverages over S and Ssucc , respectively, from

7,926 regular expressions using the developer-defined test suite in
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Figure 5: Node, edge, edge-pair coverage of 7,926 regular expressions with Rex-generated ASCII inputs (Rex1M , Rex5M , Rex10M)

of 7,926 regular expressions in GitHub which are used in Rex (RepoBS , RepoBM).

Table 7: Coverage values of the 7,926 regular expressions in

GitHub for RepoBM and RepoBS in Figure 5.

Coverage Expr mean 25% 50% 75% 90% 99%

NC (%) RepoBM 70.41 43.75 80.00 97.67 99.84 99.90

EC (%) RepoBM 33.79 12.01 45.91 49.97 50.00 66.67

EPC (%) RepoBM 29.39 4.83 37.50 49.97 50.00 60.00

NC (%) RepoBS 73.27 46.15 85.71 99.83 100.00 100.00

EC (%) RepoBS 36.35 12.36 48.39 49.97 60.00 85.71

EPC (%) RepoBS 30.68 5.13 40.00 49.97 50.00 74.67

Table 8: Coverage values of the 7,926 regular expressions us-

ing Rex for Rex1M, Rex5M, and Rex10M in Figure 5.

Coverage Expr mean 25% 50% 75% 90% 99%

NC (%) Rex1M 69.29 41.67 78.33 97.44 99.84 99.90

EC (%) Rex1M 33.57 11.62 45.00 49.97 50.00 71.43

EPC (%) Rex1M 29.50 4.33 35.00 49.96 50.00 66.67

NC (%) Rex5M 71.69 46.15 83.33 97.67 99.84 99.90

EC (%) Rex5M 36.42 12.77 49.81 50.00 54.55 80.00

EPC (%) Rex5M 33.04 6.63 49.54 50.00 56.67 75.00

NC (%) Rex10M 72.01 46.15 83.33 97.73 99.84 99.90

EC (%) Rex10M 36.87 13.39 49.85 50.00 55.89 80.00

EPC (%) Rex10M 33.77 6.90 49.77 50.00 58.33 75.00

GitHub; details are in Table 7. Rex1M, Rex5M, and Rex10M show the

coverages of 7,926 regular expressions based on the Rex-generated

test inputs with sizes of 1x, 5x, and 10x of |Ssucc | the user-defined

test suite, respectively. Coverage details are shown in Table 8.

Table 9 illustrates the differences in coverage between the repos-

itory (RepoBM and RepoBS) and Rex (Rex1M, Rex5M, and Rex10M).

Using a paired Wilcoxon signed-rank test, we find that for all three

coverage metrics, RepoBM significantly outperforms Rex1M with

α = 0.0001. However, as test suite size is strongly correlated with

coverage [19], as soon as the Rex test set is amplified to 5x and 10x

the size, the coverage of Rex outperforms the developer coverage.

When considering all test inputs from the repository and not just

the successful ones, with test inputs sets of the same size, RepoBS

outperforms Rex1M. However, this comparison is unfair since Rex

does not generate non-matching strings. That said, as soon as the

Rex dataset is amplified as in Rex5M and Rex10M, there is no clear

winner compared to all test inputs from the repository. While it

Table 9: Differences in coverage based on datasets in Fig-

ure 5. Hypothesis tests used paired Wilcoxon signed-rank

test. Bold text identifies when one of the datasets had sig-

nificantly higher coverage for all three metrics. If there was

a conflict between the metrics (e.g., Set1 > Set2 for NC, and

Set1 < Set2 for EPC), there was no winner

H0 : Set1
d
= Set2

Set1 Set2 NC EC EPC

RepoBM Rex1M p < 0.0001 p < 0.0001 p < 0.0001

RepoBM Rex5M p < 0.0001 p < 0.0001 p < 0.0001

RepoBM Rex10M p < 0.0001 p < 0.0001 p < 0.0001

RepoBS Rex1M p < 0.0001 p < 0.0001 p < 0.0001

RepoBS Rex5M p < 0.0001 p = 0.0004 p < 0.0001

RepoBS Rex10M p < 0.0001 p = 0.4147 p < 0.0001

RepoBS RepoBM p < 0.0001 p < 0.0001 p < 0.0001

may appear that Rex can do as well as the repository, the reality is

that the error node will never be covered by Rex, a fact which is

not apparent by looking at the numbers alone.

Summary: Rex can handle approximately 78.1% of the regular

expressions from our dataset. Considering only the matching test

inputs and test sets of the same size, Rex does not achieve coverage

as high as the developer-written tests. However, the coverage num-

bers are extremely close. This indicates that tools such as Rex can

be used to write test inputs with similar coverage to the developer

tests, but will always miss Ne and all edges incident to it.

7 DISCUSSION

This section summarizes future work based on our findings and

discusses threats to validity.

7.1 Opportunities for Future Work

Coverage provides useful stopping criteria for testing. However,

high coverage does not necessarily imply test suite effectiveness in

source code [19], which may also hold true for regular expressions.

At the same time, as regular expressions are responsible for many

software faults, it is important to explore how to make them less

error-prone. Our approach in this work is through test metrics, and

there are many areas of future work that follow:
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String-generation Tools: Given the low coverage of regular

expressions shown in Figure 4, a natural next step could be to

generate strings to achieve high coverage. Adding a mutation step

to the input string may be effective at forcing the Rex-generated

strings into the error state to cover the uncovered edges and node.

An alternate approach may be to provide the complement of the

regular expression to Rex as another way to generate failing inputs.

With automatically-generated strings, one threat is usability. For

the developer-written tests, it is likely that the regular expression

strings are more meaningful in context than they are for the Rex-

generated strings. Future work will look at the overlap in content

between the test inputs from the repository and from Rex.

However, it may not always be possible to achieve 100% test

coverage, even with a perfect string generation tool. There are

regular expressions that are untested because they are unreach-

able. Some regular expressions have hard-coded matching inputs,

which makes it impossible to improve the coverage; for example:

boolean isMatch = Pattern.matches("a*b", "ab"); Future work for im-

proving coverage levels should also consider the potential for im-

provement based on such factors.

Beyond Structural Coverage: The metrics we explore are

structural metrics, which can identify faults that are revealed in the

structure of the DFA, such as the example in Section 2.3. Alternately,

as suggested in prior work [10], refactoring could potentially reveal

this particular fault, as the numeric representation [0-9]was found

to be more understandable than \d. Performing the replacement

might alert the developer that d should be \d.

In terms of improving regular expression testing, structural met-

rics are a first step. Building on the example in Section 3, achieving

100% coverage requires a minimum number of test inputs that vary

in string length and content. In the example of \d+, there are strings

of length one to length four, though strings could be longer to test

multiple iterations on the self-loop. Strings can contain only digits,

only non-digits, or both digits and non-digits. Strings can start with

digits or start with non-digits. Defining such input space partitions

may lead to intuitive test sets with high behavioral coverage.

7.2 Threats to Validity

Internal: Wemeasure the test coverage of regular expression used

in functions of full matching with FullMatch DFAs in the forward

direction. The experimental results may not reflect the test coverage

of regular expressions used in other functions, nor the test coverage

of regular expressions which could not be converted into a DFA.

External: The Java regular expressions used in this evaluation

were collected from RepoReaper JavaMaven projects compiled with

Java jdk1.7, which is only a small portion of all GitHub Java projects

and may not generalize to all Java projects and to other languages.

It is possible that there are still regular expressions from third-party

libraries in the dataset, which could bias results. Due to limitations

of RE2 and Rex, the results of test coverage applies exclusively to

the features supported. All our projects had test suites, which may

overestimate the test coverage levels for typical regular expressions.

8 RELATED WORK

Regular expressions are used widely in software programs [9] but

are often difficult to understand and error-prone [10]. Prior work on

regular expression comprehension [10] raises a concern about how

well the regular expressions used in programs are tested. Although

there are papers on program test coverage, none of them have

specifically discussed testing regular expressions.

Software test coverage can be measured at different levels of

granularity, such as method, statement, branch, integration, and

unit (e.g., [2, 24, 27, 31, 37]). Symbolic execution [3, 7, 8, 35] is

one way to generate inputs and to obtain program test coverage

at the level of branches. There are many tools for automated test

generation [16, 30, 36]. For example, Reggae [25] aims to mitigate

the large space exploration issues in generating test inputs for

programs with regular expressions.

With respect to the finite automaton constructed from regular

expressions, brics [28] contains a DFA implementation with very

limited operations; while RE2 [13, 14] provides a DFA implemen-

tation which runs much faster than traditional regular expression

engines. Rex [33] builds a symbolic representation of finite au-

tomata (SFA). Some string solvers [21] and tools for generating

testing inputs which use string solvers [18, 34] build finite-state

automata based on string constraints.

Visualizations to aid debugging [1, 6] are powerful techniques

for regular expression comprehension, and may provide some ex-

planation for low test coverage of regular expressions in source

code, that is, developers use online tools instead.

Other techniques and tools have been developed in string genera-

tion or regular expression extraction for system fault detection and

performance optimization. Rex [33] generates testing inputs for the

regular expression according to its SFA representation. brics [28]

generates inputs by traversing the DFA and building strings from

the smallest bytes to the largest bytes of every DFA states. Some

string generation tools need user-specified string length [18, 21, 28].

EGRET [23] is focused on generating unexpected test strings to

expose the regular expression errors, but it is based on common

mistakes when creating regular expression rather than maximizing

test coverage of regular expressions. MUTREX [4] employs distin-

guishing strings which can separate a mutated regular expression

from the original one to expose system faults. Genetic programming

has also been applied [12] to find equivalent alternative regular

expressions which exhibit improved performances.

9 CONCLUSION

In this paper we explore coverage over the DFA representation of

a regular expression and measure coverage of regular expressions

from 1,225 GitHub Java Maven projects. We find that over 80%

of FullMatch functions are not tested and that most of the tested

regular expressions have a low edge and edge-pair coverage. We

also show that with the help of the regular expression tool Rex

it is possible to improve the regular expression testing coverage

by adding input strings, but that there is an upper bound for this

type of improvement. This work is a first step toward better un-

derstanding how regular expressions are tested in the wild; future

work will explore how various coverage metrics can reduce the

bugs associated with regular expressions.
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